English title: Prospect for Knowledge in Survey Data - An Artificial Neural Network Sensitivity Analysis

Author(s): Patrick Weber - Nicolas Weber - Michael Goesele - Rüdiger Kabst -

Language: English

Type: Journal article

Year: 2017


Policy making depends on good knowledge of the corresponding target audience. To maximize the designated outcome, it is essential to understand the underlying coherences. Machine learning techniques are capable of analyzing data containing behavioral aspects, evaluations, attitudes, and social values. We show how existing machine learning techniques can be used to identify behavioral aspects of human decision-making and to predict human behavior. These techniques allow to extract high resolution decision functions that enable to draw conclusions on human behavior. Our focus is on voter turnout, for which we use data acquired by the European Social Survey on the German national vote. We show how to train an artificial expert and how to extract the behavioral aspects to build optimized policies. Our method achieves an increase in adjusted R2 of 102% compared to a classic logistic regression prediction. We further evaluate the performance of our method compared to other machine learning techniques such as support vector machines and random forests. The results show that it is possible to better understand unknown variable relationships.

Volume: 0

Issue: 0

From page no: 0

To page no: 0

Refereed: Yes

DOI: 10.1177/0894439317725836

Journal: Social science computer review

By continuing to visit our site, you accept the use of cookies. We use cookies for website functionality
and analyzing site usage through anonymized Google Analytics tracking. [Read more]